
 Symulacja w Badaniach i Rozwoju
Vol. 3, No. 4/2012

 205

Stanislaw RACZYNSKI
Uniersidad Panamericana

Augusto Rodin 498, 03910 Mexico City, Mexico
E-mail: stanracz@stanr.com

Object Properties
in Discrete Event Simulation: Attributes,

Functions and non-typical Behavior

1 Introduction

Important questions both in teaching and implementing computer simulation are:
• Must a simulationist be a programmer?
• Must he/she be a mathematician?

Depending on what is the role of the simulationist in the whole process of creating and
using a simulation program the response may be yes or not. It seems that the
commercial simulation tools are being developed in order to prevent the user from any
coding and to make all the mathematics (statistical considerations) as transparent and
simple as possible. To say that this is a correct tendency, first of all we must know who
the simulationist is. If he/she is an industrial engineer, a sociologist, a warehouse
manager or just an amateur, the tool should be "fast and easy", and the simulationist
need not be a programmer or a mathematician (user of kind 1). However, if he/she is a
professional simulationist who develops simulations in serious and professionally
advanced way, he/she should be able to create and code necessary algorithms and be
aware of the model mathematics (user of kind 2). While teaching computer simulation
it is not always clear to which kind of users we should address. This is an important
question, because the contents of the simulation course and the tools used, strongly
depend on the student/user kind.

It seems that the new discrete event and general purpose packages are being designed
mostly for the users of kind 1. The new software has always a well designed Graphical
User Interface (GUI) and offers ready-to-use encapsulated probability distributions and
statistics. However, despite of good manuals and additional materials, the users of kind
1 frequently commit fundamental errors, like using the Poisson enter-arrival time
distribution for the Poisson arrival process.

One could say that users of kind 2 can do their simulations in any algorithmic language
and need no simulation packages. Obviously, this is not true. A simulation tool should
provide ready to use mechanisms to avoid unnecessary work (but nothing more). In
general, the question is if, in our simulations, we need intelligent objects (agents) at all.
The answer is yes. Such objects are not needed in academic examples and simple
simulations (users of kind 1). However, if we face the reality, for example a real
manufacturing system, it is quite sure that there will be objects that do not fit in standard
blocks or facilities offered by most of the simulation packages. In such case the use of
intelligent objects is inevitable.

Stanislaw RACZYNSKI

206

This paper is not a survey of simulation software. The packages mentioned below are
only selected examples. It is supposed that the reader already knows how they work.

2 Time and event management, and object behavior - some
known tools

By Time and Event Management (TEM) we will understand the model time clock
and event queue management, including the basic queuing model operations, provided
by the simulation package. The Object Behavior Modeling (OBM) is a set of additional
items like user-defined distributions and logical functions, non-typical operations,
object attributes and the general object behavior.

Let us start with GPSS (General Purpose Simulation System), omitting earlier tools like
a forgotten but very nice language of 1950s CLS (Control and Simulation Language).

2.1 GPSS
This language, developed primarily by Geoffrey Gordon at IBM around 1960 [2], has
contributed with important concepts. This is an old tool, but it is still used and works
perfectly. In fact, GPSS is an object-oriented tool, although it does not fit into the
modern object-oriented paradigms. The objects in GPSS are called transactions. These
are moving items that appear, go through the fixed model facilities and disappear. GPSS
World has been extended by PLUS, the Programming Language Under Simulation.
The TEM level instruction set of GPSS is simple, easy to use and works perfectly. It can
be dominated by anyone in few hours of learning. The OBM level mechanisms are not
so easy. If the user wants to equip objects (transactions) with any additional properties
and individual, non-standard behavior, he must learn PLUS and dominate the
information about the SNAs (Standard Numeric Attributes). The Plus manual is a whole
chapter of the GPSS manual, or a separate document of about 60 pages. The SNA
documentation occupies also several dozen pages, including such items as A1, AC1
(absolute clock), C1, CAx, CCx, CHx, CMx, CTx, Fx, FCx, FIx, FNx, FRx, FTx, FVx,
GNx, GTx, LSx, MBx, MPx, MXx, M1x, Nx, Px and about 30 more (x is usually
an integer number). Learning all this stuff the user can simulate more advances models,
but the created objects can hardly be considered as "intelligent".

 2.2 ARENA
Arena modeling system from Systems Modeling Corporation is a nice and widely used
simulation tool. It is equipped with a GUI and animation mechanisms [3]. The TEM
level of Arena permits to quickly create a queuing or manufacturing discrete event
models. No coding is needed and the task results in clear flowcharts of the model. The
OBM level is somewhat more complicated. Arena is built over the SIMAN [5]
simulation language. So, first of all, to be able to manage somewhat more sophisticated
object behavior, the user must learn SIMAN. This permits the use of user-defined
logics, statistics and/or a non-standard object behavior. The Arena entities (moving
objects) can be equipped with attributes of the following type: General attributes, time

attributes, cost attributes, entity type variable, group member variables and other. The
specification of the attributes and other Arena pre-defined variables takes about 30
pages in the Arena documentation. Again, if the user wants to create and manage a little
bit more complicated object behavior, he/she must learn SIMAN and dominate dozens
of pages of the Arena manual.

Object Properties in Discrete Event Simulation:
Attributes, Functions and non-typical Behavior

207

2.3 SIMIO®
This is a multi paradigm software delivered by Simio LLC. Simio is created by a team
of simulation software developers led by Dennis Pegden [5] [6].

Compared to Arena SIMIO is a step forward in creating models with intelligent objects.
The object definition in SIMIO is more general. Objects may be fixed facilities or
moving dynamic objects named entities. The user can define his own objects, store and
reuse them, or use the objects from a standard library. These may be: fixed (server,
machine), link (a pathway for entities), node (link intersections), entity (dynamic object,
like client in a shop), transporter (it can pick up and drop entities at nodes).

The user defines the object properties. They may be of different types such as strings,
numbers, selections from a list and expressions. The properties are edited in multiple
edition windows. There are many ways to define a SIMIO model. A programmer
familiar with an object oriented language like C++ or Delphi can understand and
dominate the SIMIO modeling in reasonable time and effort. SIMIO creators claim that
the process-based objects in the SIMIO model are both simpler and more powerful than
the code-based objects in other modeling tools. SIMIO offers both TEM and OBM
facilities, although they are not clearly separated from each other.

2.4 SIMULA
We must mention here Simula [1] (its mostly known version 67). Although it was a tool
developed more that 50 years ago, it is still perhaps one of the most advanced and
elegant object oriented languages. In fact, Simula itself is just object-oriented and not
a simulation language. The modeling facilities have been added to the language as a part
of its standard class library, and are encapsulated in a pre-defined class named Process.
Any object that inherits the Process class properties can use the clock mechanism, and
event scheduling and execution mechanisms (called here TEM). The OBM (object
behavior management) is coded directly in the language. As an old software, it
originally had no GUI and other graphical facilities. The language is rather difficult to
learn, and needs previous training in Algol.

One of the recent trends is to enable the user to create intelligent objects in discrete
event simulation. First of all, we should agree what means "intelligent". If we want the
objects to be able to add and multiply numbers and execute logical expressions, most
of the simulation packages provide these features. However, if we define the
"intelligence" as the ability to make decisions due to a more sophisticated algorithms
or equip the objects with some kind of artificial intelligence, only advanced object-
oriented algorithmic languages provide such features. Looking at the above example
packages, only Simula has this capacity.

Anyway, if someone wants to create an object-oriented simulation package with
intelligent objects, he/she finally must create a new high level object-oriented
algorithmic language, even if it runs behind a well designed GUI. The question is: isn't
it better to take a known, complete, widely known, used and advanced language and add
to it the time and queuing management layer (TEM)?

Stanislaw RACZYNSKI

208

3 BLUESSS/QMG concepts
Let us compare the software mentioned above with some concepts of the BLUESSS
(Blues Simulation System). The comparison refers only to the BLUESSS queuing
module (QGM) and not to the whole system.
BLUESSS evolved from the PASION and PSM++ packages, related to Delphi. Some
applications and remarks on discrete event simulation can be found in [7], [8] and [9].
The package runs over the Borland's C++Builder. The user can be of kind 1 or of kind 2
(programmer skills). Taking about a professional simulationist we should rather think
about users of kind 2. My point is that few really professional simulationists do not
dominate C++. BLUESS is a simple simulation language and has the BLUESSS-to-C++
translator. The user can code his model in the BLUESS language, or use one of the
BLUESS modules to create models without coding.

Fig. 1. BLUESSS features

The following modules (source code generators) are included in the BLUESSS package:
* Queuing Model Generator
* Flow diagrams. Continuous simulation using signal flow diagrams.
* Continuous simulation using bond graphs.
* Continuous simulation, ordinary differential equations.

After defining the model, the BLUESS system generates the C++ code and invokes the
C++Builder which produces the executable program. The event queue in BLUESSS
works due to the three-phase discrete simulation strategy [4].

Using the QMG module the user defines the model in the Arena-like style, with no
coding at all. As the process of creating exe file (stand-alone, independent executable)
passes through the C++ compilation, the BLUESSS QMG module can use all the
features of C++ (see figure 1).

In other words, the comparison of QMG with, for example, Arena can be summarized
in the following table:

Object Properties in Discrete Event Simulation:
Attributes, Functions and non-typical Behavior

209

Tab. 1. Creating intelligent objects (Arena vs. BLUESSS)

Arena Why not replace it with:
Create model flowchart
with Arena

Use QMG graphical
model editor

Learn SIMAN,
learn Arena manual
including 30 pages of
entity attribute and
expression specifications,
code the necessary
expressions

Use C++

Note that the QMG graphical model editor is very simple and can be dominated in 15
minutes of "training", even without consulting any documentation. The objects created
in QMG can be equipped with a simple abilities (logical expressions, additional
attributes). However, in the advanced simulations they can be equipped with more
complicated behavior, like decision making algorithms, fuzzy logic, iterative
optimization algorithms, neural nets, database consulting and other. They can execute
external programs or use external files. The object can do everything what can be coded
in C++. There are no restrictions on the type and size of its attributes (those can be
numbers, strings, arrays, pointers, and/or C++ structures of any kind). If required, the
object can communicate through the Internet, sing a song, display an OpenGL image,
execute an external program etc. Obviously objects cannot intervene in the TEM (Time
and Event Management) of QMG. There are also some restrictions on the use of
pointers.

To create a QMG flowchart the user picks up blocks (like GPSS facilities or Arena
modules), and defines the model structure and the basic block parameters like inter-
arrival times, service times etc. Then the simulation can be invoked. The entities
(dynamic objects) appear, go through the blocks and disappear. As stated before, the
additional entity attributes can be declared, being of any available C++ type.

Stanislaw RACZYNSKI

210

Fig. 2. Fragment of a QMG model. Automatic calls to the SVOP function

The relation between the entities and C++ entity-related code is very simple. Any entity
which enters to any of the model blocks, calls a global C++ function named SVOP. Both
calling entity and block identifiers, as well as all entity attributes are passed to SVOP as
actual parameters. For the assembly operation SVOP is called by each entering entity
and for the new (assembled) one. So, in the SVOP body the user can identify the
block/entity pair and code any required action. For example, entities can enable or
disable model blocks (using the semaphore logic variables) or execute more
complicated actions (figure 2.).

Suppose, for example, that we need the following actions to be taken:

* If an entity enters the queue 59, its string attribute myname includes the string "dog"
and the entity age is greater than 100 model time units (the time spent in the system),
then invoke external program other.exe.

* If any entity enters the assembly block 42 and the sum S of the length of queue 39 and
queue 41 exceeds 24, close (disable) generators 29 and 40. If S is less or equal to 24
then enable these generators.

* If any entity waits in any queue for more than 20 time units, display a warning
message

In the below code n is the calling block number, SOURCE is the number of the block
where the entity has been created, TIMIN is the model time instant when the entity has
been created, TIMQ is the time the entity has been waiting in a queue (if it is actually
waiting), and myname is an additional, use-defined entity attribute. TIME is a global
variable representing the model time. The function nr returns the queue length. QUEx is
the reference to the queue block number x, and SEMx is a boolean variable (a
semaphore) that enables (if true) or disables (false) the block number x. DisplayWorning
is a user-defined C++ function (may show something on the screen, emit a sound etc.).

The SVOP procedure in this case may be as follows:

Object Properties in Discrete Event Simulation:
Attributes, Functions and non-typical Behavior

211

void SVOP(int n, int SOURCE,
 float TIMIN, float TIMQ, String& myname)
{
bool b;
if(n==59 && AnsiPos("dog",myname)>0
 && TIME-TIMIN>100)
 WinExec("other.exe",1);
if(n==42){
 b=nr(QUE39)+nr(QUE41)>24;
 SEM29=b; SEM40=b;}
if(TIMQ>20)DisplayWarning();
}
This is a very simple example. Inside the SVOP function the user can insert any C++
code to define the entity behavior and/or block operations.

4 More about BLUESSS
As stated before, BLUESSS is general purpose package. It contains several modules
(source code generators) for queuing/manufacturing models, continuous simulation
using ordinary differential equations, signal flow graphs, bond graphs or combined
models. The user can create the source code or use any of the BLUESSS modules to
avoid coding. Any BLUESSS simulation task passes through the source BLUESSS
code and C++ code generated automatically. The final product is an independent exe
file, ready to run. The package structure is shown on figure 3. In BLUESSS everything
(except the code taken from C++ libraries) passes through the BLUESSS source code
and through the C++ code. The user can create his/her code or use the code generators.
Other options are:
Queuing models: The queuing module generates the source code which is translated to
C++ and compiled.
ODE (Ordinary Differential Equations) module receives the right-hand-sides of the
equations. The rest is done automatically (source code generation, compilation).
Block diagrams and signal flow module: The user defines graphically the model
structure and the necessary parameters. The module generates the model equations, the
rest is done as above.
Bond graphs: The user draws the bond graph model and gives its parameters. The rest
is done automatically.
Animator: 2D off-line animation of queuing models is available (see figure 4).

Variance analysis: post-mortem additional statistical analysis can be invoked. This
includes the max-min and confidence intervals for the model trajectories, shown as
functions of time. This feature, provided by few simulation packages is very useful
while simulating queuing and stochastic models. On figure 5 an example of such plot is
shown. This is the length of a simulated queue. The gray region is where the length of
the queue is supposed to belong with probability 0.92. The curve inside the region is the
average queue length in function of model time. The average is taken over a series of

Stanislaw RACZYNSKI

212

repeating simulations. If the gray region is big (big variance), then it can be seen how
little information provides the average value.

Fig. 3. BLUESS package

The user can see and modify both the BLUESSS and C++ codes. For queuing models,
he/she can also use the SVOP function as described earlier. Although the queuing
models of BLUESSS are rather simple, the possibility of working on the generated code
makes it possible to simulate any required object behavior.

Object Properties in Discrete Event Simulation:
Attributes, Functions and non

Fig. 4. Bluesss animation of a manufacturing model.

Fig. 5. Confidence intervals for the length o

Those are only some examples of BLUESSS features. BLUESSS can use any tools
available in C++. Interesting animations, both for continuous and discrete event models
can be created using the OpenGL graphics. Some tools that facilitate the BLUESSS
OpenGL communication are provided in the package.

Observe (figure 3) that both discrete event and continuous models result in the
BLUESSS source code. The only difference is that the continu
as a sequence of events with a small time step, each event being a call to one of the
possible numerical methods for ODE. This means, that at the source code level the user
can mix discrete and continuous models in the same simulat

Object Properties in Discrete Event Simulation:
Attributes, Functions and non-typical Behavior

4. Bluesss animation of a manufacturing model. Queues, machines and conveyers

5. Confidence intervals for the length of a queue as a function of time

Those are only some examples of BLUESSS features. BLUESSS can use any tools
available in C++. Interesting animations, both for continuous and discrete event models

using the OpenGL graphics. Some tools that facilitate the BLUESSS
OpenGL communication are provided in the package.

Observe (figure 3) that both discrete event and continuous models result in the
BLUESSS source code. The only difference is that the continuous models are simulated
as a sequence of events with a small time step, each event being a call to one of the
possible numerical methods for ODE. This means, that at the source code level the user
can mix discrete and continuous models in the same simulation program. On the figure

213

conveyers

Those are only some examples of BLUESSS features. BLUESSS can use any tools
available in C++. Interesting animations, both for continuous and discrete event models

using the OpenGL graphics. Some tools that facilitate the BLUESSS-

Observe (figure 3) that both discrete event and continuous models result in the
ous models are simulated

as a sequence of events with a small time step, each event being a call to one of the
possible numerical methods for ODE. This means, that at the source code level the user

ion program. On the figure

Stanislaw RACZYNSKI

214

6 you can see a screen of a continuous model simulation (multiple pendulum), animated
with OpenGL graphics.

5 Conclusions
BLUESSS is not a widely know commercial software. This is rather a proposal on
a possible direction in simulation software development. The point is that what is really
needed in discrete event simulation consists in the fast clock machine (event queue
management) and good model structure definition tools.

The algorithmic aspect of the modeling, like intelligent object behavior, should be
handled by a high level algorithmic language rather than complicated parameter
specification and expression building incorporated in the package. Using one of already
developed and powerful object-oriented language in the background gives us a much
more versatile tool to handle all what is not a simple queuing and discrete event
simulation. In the case of professional level of simulation tasks, there are few
developers who don't already dominate C++ or similar tools and should be able to use
these abilities in modeling and simulation.

 References
1. Dahl O., Nygaard B.: Simula - an Algol-based simulation language,

Communications of the ACM, no.9, pp.671-678, 1967
2. Gordon G.: The application of GPSS to discrete system simulation, Prentice-Hall,

1975
3. Kelton D., Sadowski R and Sadowski D.: Simulation with ARENA, McGraw- Hill,

New York, 2004
4. O'Keefe R.M.: The three-phase approach: A comment on strategy-related

characteristics of discrete event languages and models, SIMULATION 47(5),
pp. 208-210, November 1986

5. Pedgen, C. D., Shannon R. E. and Sadowski R. P.: Introduction to simulation using

SIMAN. McGraw Hill, 1995
6. Pedgen C. D. and Sturrock D. T.: Introduction to Simio, in Proceedings of the 2010

Winter Simulation Conference, Simio LLC, Sewickley, PA, USA, 2010
7. Raczynski S.: Alternative mathematical tools for modeling and simulation: Metric

space of models, Uncertainty, Differential Inclusions and Semi-discrete Events,
Proceeedings, European Simulation Symposium ESS2000, Hamburg, Germany,
September 2000

8. Raczynski S.: Simulation of the Dynamic Interactions Between Terror and Anti-

Terror Organizational Structures, The Journal of Artificial Societies and Social
Simulation, vol.7, no.2, England, 2004, http://jasss.soc.surrey.ac.uk/7/2/8.html

9. Raczynski S.: Modeling and Simulation: Computer Science of Illusion, Wiley,
England, 2006

Object Properties in Discrete Event Simulation:
Attributes, Functions and non-typical Behavior

215

Fig. 6. A chain of rigid bodies in movement

Summary
A comparison between old and new standards like GPSS, Simula67, Arena, Simio
and BLUESSS is made from the point of view of additional user-defined object
attributes and related functions. The scope of the applications under consideration is
limited to the discrete-event, queuing and manufacturing simulation. The focus is made
on the management of the object attributes and related operations, and on the way
to make the simulation tool flexible enough without complicating the basic model
building operations. A proposal of a new simulation tool is presented.

Keywords: PSM++, BLUESSS, Simula67, GPSS, Arena, Simio,C++, simulation,
queueing, manufacturing

 Symulacja w Badaniach i Rozwoju
Vol. 3, No. 4/2012

 216

